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Abstract

A run of the deferred acceptance (DA) algorithm may contain pro-
posals that are sure to be rejected. In this paper we introduce the
accelerated deferred acceptance algorithm that proceeds in a similar
manner to DA but with sure-to-be rejected proposals ruled out. Ac-
celerated deferred acceptance outputs the same stable matching as DA
but does so more efficiently: it terminates in weakly fewer rounds, re-
quires weakly fewer proposals, and stable pairs match no later. Com-
putational experiments show that the efficiency savings can be strict.
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1 Introduction

In this paper we introduce a new algorithm to find a stable matching in
two-sided matching markets. Our accelerated deferred acceptance algorithm
combines the classic deferred acceptance (DA) algorithm of Gale and Shap-
ley (1962) with the iterated deletion of unattractive alternatives (IDUA)
procedure (Balinski and Ratier, 1997; Gutin et al., 2023). Accelerated de-
ferred acceptance is reminiscent of DA since it is based on sequential propos-
als, rejections, and tentative acceptances. Accelerated deferred acceptance
borrows insight from IDUA by truncating preference lists so that future,
sure-to-be rejected proposals are prevented from taking place.

We consider two-sided markets with “men” on one side and “women” on
the other. With men in the role of proposers, accelerated deferred acceptance
(hereafter ADA) diverges from classical DA in just one way: once a woman
has a proposal, she rejects all men ranked below her top proposer and not
just those that proposed concurrently.1,2

Algorithm Accelerated deferred acceptance

Initialise all men as single. Every round of the algorithm proceeds as follows:

1. Each single man proposes to his most preferred woman who has not yet
rejected him.
2. Each woman with at least one proposal tentatively accepts her top pro-
poser and rejects all men that she ranks below him.
3. Any man who is not matched becomes single.

When there is a round in which no man is rejected, return the current pairs.

Theorem 1 confirms that ADA always returns the same output as DA.
Given this, any and all properties of DA are inherited by ADA “for free”.
For example, ADA generates the proposer-optimal stable matching and a
mechanism based on it must be strategy proof for the proposers.

While both algorithms ultimately arrive at the same stable matching,
the pre-emptive rejections allowed by ADA mean that it typically takes a
different route to the shared endpoint. With ADA, once a woman is proposed

1Operationally, the difference is clear. Semantically, however, the algorithms are very
similar. In fact, ADA deviates from DA (see Algorithm 1 for the formal statement) in just
one term: the word “men”, typeset in red for emphasis, replaces the word “proposers”.

2It turns out that ADA is equivalent to the round-by-round variant of, and therefore
a special case of, the extended Gale-Shapley algorithm of Gusfield and Irving (1989). The
connection is detailed later in this section. We thank David Manlove for pointing this out.
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to, she will never again receive a proposal from a man that she ranks below
her current partner. As such, whenever a woman receives a new proposal,
she is guaranteed to trade up. For men the situation is also different because
with ADA a rejection may arrive out of the blue. Such pre-emptive rejections
may be unexpected at the time, but, in the event that a man is single or
will be at some point in the future, can be informative for deciding who he
ought propose to next.

Not only is the alternate path taken by ADA to arrive at the man-
optimal stable matching different to that of DA, it is also more efficient
according to certain objective measures: number of proposals required for
the market to clear; number of rounds for the market to clear; round in
which equilibrium pairs first match. When benchmarked against DA’s per-
formance, ADA requires weakly fewer proposals (Theorem 2), takes weakly
fewer rounds (Theorem 3), and equilibrium pairs match no later (a conse-
quence of Theorem 4).

Theorems 2-4 guarantee no efficiency losses but are silent on the extent
of the efficiency gains. We explore these via computational experiments on
simulated data.3 This is a non-trivial task because the number of two-sided
matching markets of size n is (n!)2n, and so even enumerating all of them
is computationally infeasible for n = 6 and up. For this reason, we propose
a novel market generator that allows one to sample random markets of any
size. A scalar parameter, c ∈ [0, 1], biases the sampling distribution. The
value c = 0 corresponds to preferences drawn uniformly from the set of
all preferences. At the other extreme, where c = 1, all individuals on the
same side of the market have identical preferences, a property known as a
“universal ranking” (Holzman and Samet, 2014).4

Our simulations show that ADA’s efficiency savings can be substantial.5

For example, in markets with 4,096 (= 212) participants on each side and
c = 0.9, the average number of proposals used by DA is over 7,500,000
whereas, in contrast, ADA required only 208,000. This is a reduction of
96%. Similarly, in markets of size 1,024 (= 210) and c = 0.9, the average
number of rounds needed by DA was 1,434 while ADA took only 91 before

3All simulations were run in Python. Code is publicly available at Karapetyan (2024).
4While statistically unlikely, a universal ranking is a common assumption in marriage

markets with endowments (Cole et al., 1992; Burdett and Coles, 1997; Eeckhout, 1999).
A universal ranking for one side is hardwired in to certain systems, of which an example
is the centralised, third-level admissions system in the Republic of Ireland. Marks out of
625 in the state-administered “Leaving Cert” exam are the sole determinant of university
entry because all programs are mandated to prioritise candidates in the same way: the
higher a student’s mark, the higher their priority.

5All results are averaged over 10,000 draws.
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clearing. This reduction is 94%.
In a run DA and in a run of ADA, women only ever trade up. Given this,

once a woman is matched she stays matched and, in particular, once a stable
pair forms they remain together forever more. As regards our novel measure
of the round in which stable pairs first match, again ADA fares noticeably
better. Figure 1 plots this metric for both algorithms for a market with
1,024 participants and c = 0.9. ADA’s trajectory is given by the solid line
and DA’s by the dashed one.
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Figure 1: The proportion of final pairs matched by round.

By the time that ADA wraps up in round 123, DA is only 7% of the
way to completion (it takes 1,820 rounds). Moreover, as of round 123, DA
has only identified 13% of the equilibrium pairings; the remaining 87% of
individuals are either unmatched or are currently paired with someone who
they will not end up with. We note that the shape of both plots is concave:
they increase linearly up until ∼95% stable pairings are found, followed by
a tapering off. That is, each algorithm requires a (relatively) large number
of rounds to find matches for the last ∼5% of individuals. In Section 4.4, we
show that this shape is not an artefact of this class of preferences. Rather, it
is common to every market that we considered. We have no good explanation
for this feature nor do we know if it is universal, but it is striking.

We hope that the efficiencies of ADA over DA will be of general inter-
est since variations of DA appear in labour markets (Crawford and Knoer,
1981; Kelso and Crawford, 1982), spectrum auctions (Milgrom and Segal,
2020), and school choice (Abdulkadiroğlu and Sönmez, 2003). Consider the
savings from ruling out sure-to-be rejected proposals in each of these envi-
ronments. An attempt to recruit a worker with a contract inferior to what
they currently hold is unlikely to prove tempting. When participating in an
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auction, why bother submitting a bid below the current ask?6 Filling out
an application form for a school that is out of reach is nothing but a tax on
the time of both parties. Whenever proposals are costly, then savings are
possible. The reduction in proposals of ADA leads to a further reduction
in the number of rounds. We refer to a round in which all proposals are
rejected as an idle round. ADA never produces an idle round, whereas DA
may include one and often contains many.

ADA’s savings over DA may be magnified in markets more general than
those considered here. As an example, consider an unbalanced market with
n women and strictly more men. Consider a man who ends up unmatched
(by definition there is at least one). A run of DA will last for at least n
rounds because the above mentioned man proposes to each of the women
on his preference list. But with ADA, this man may drop out in an earlier
round as a result of pre-emptive rejections.

While ADA has some clear advantages, it should not be viewed as uni-
formly superior to DA. First of all, ADA’s efficiency gains depend crucially
on the notion of a “round”.7 If each operation within a round, i.e., a pro-
posal or a rejection, has equal cost (a common algorithmic assumption),
then ADA can have rounds that are more costly. Certainly, ADA requires
(weakly) more operations in the first round: both have the same number of
proposals, while ADA has at least as many rejections.

Second, a run of ADA uses weakly more total rejections (defined as the
sum of direct rejections, made in response to a proposal, and pre-emptive
rejections). Furthermore, we see no reason why the cost of communicating a
direct rejection and that of communicating a pre-emptive one would always
be equal. On the contrary, it seems plausible to us that these communication
costs could vary with market structure. And depending on the relative costs,
ADA may or may not be preferred to DA.

For the reasons above, we believe that ADA’s advantages lie in settings
that employ mechanisms that are dynamic, i.e., unmatched individuals are
called upon to act every round. One such example is the iterated deferred
acceptance algorithm of Bó and Hakimov (2022), a sequential mechanism,
motivated by its real-world use in certain school assignment systems, wherein
unmatched proposers make one proposal each round and pairings are made
and updated according to proposals in each round.

We conclude the introduction with a brief discussion of interpretation.
One can interpret ADA in a similar light to DA, as a setting where men

6In fact, often the rules of the exchange will explicitly forbid such behaviour.
7We thank an anonymous referee for urging greater emphasis of this point.
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traverse a dance floor to ask women for a dance, but with the algorithm
clever enough that it can identify wasteful proposals coming down the tracks
and barring them. Other readings are possible. One way to make sense of
the difference in the two procedures is in the level of informational feedback.8

Under DA, men only receive feedback in response to a rejected proposal and
any time that a man receives feedback it is of the form: “your proposee
rejected you”. The information flow associated with ADA is richer in two
ways. First, two kinds of feedback for men are possible: “your proposee
rejected you” and “the following women are out of your league”. Second,
the timing of feedback is less structured. While the former occurs only in
response to a rejected proposal, the latter can arrive in any round and is
irrespective of the whether the man is matched or unmatched.

In order for an increase in information feedback to improve efficiency,
individuals must act on it. But this requires some level of strategic sophisti-
cation. Gale and Shapley’s DA demands very little of market participants:
men blindly propose to their top available choice and all that is required of
women is that they can rank proposers.9

In contrast, our ADA can be understood as participants displaying so-
phisticated reasoning. In the first round each man proposes to his ideal
partner; this seems reasonable since by definition she is unattached. But
in later rounds, mightn’t a strategic proposer contemplate making a pro-
posal to a woman who already has a partner? And if proposals are costly to
make, some reflection on the part of would-be proposers could well rule out
sure-to-be rejected ones. Along these lines, Bó and Hakimov (2019) report
on an experimental test of the iterated deferred acceptance algorithm with
subjects who, from round 2 onwards, avoid proposals that won’t lead any-
where; they refer to this behaviour as a “skipping strategy”. Furthermore,
just as making a proposal might be costly, it is possible that responding to
one is burdensome. If this is the case, then it is in a woman’s interest to
avoid unnecessary proposals. It seems reasonable to suppose that protocols
or mechanisms might develop whereby women convey this information to
those who are certain to waste their time in future.

8The role that information plays in markets cannot be understated, Hayek (1945) is
the classic reference, and matching markets are no exception. Information feedback seems
particularly relevant for dynamic environments (Akbarpour et al., 2020; Doval, 2022).

9Proposing to one’s top available choice without any thought has the flavour of a greedy
algorithm, and in the language of models of strategic sophistication (Nagel, 1995; Stahl
and Wilson, 1994, 1995) might best be described as level-0 behaviour.
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Related literature

It is difficult to overstate the role played by deferred acceptance in the de-
velopment of market design. In fact, an argument can be made that the two
are inseparable. Roth (2008) is a survey article devoted entirely to the algo-
rithm that documents its importance and provides historical context. The
2023 edited volume Online and Matching-Based Market Design (Echenique
et al.) contains 32 chapters written by leading experts. Discussion of DA
appears throughout and plays a prominent role in Chapters 1, 7, 8, 10, 11,
12, 14, 15, and 24. Direct reference to “deferred acceptance” or “DA” occurs
in excess of 300 times.

While we view our augmentation of Gale and Shapley’s original 1962 DA
algorithm as the main contribution of this paper, it is important to note that
we are not as original as we first thought. Indeed, it turns out that acceler-
ated deferred acceptance algorithm is simply the round-by-round variant of
the extended Gale-Shapley algorithm proposed in Gusfield and Irving (1989).
The difference can be understood as follows. Like Gale and Shapley’s origi-
nal formulation of DA, our ADA proceeds via rounds wherein all single men
simultaneously propose. Gusfield and Irving’s procedure, on the other hand,
uses the nondeterministic proposal protocol of the formulation of DA due
to McVitie and Wilson (1971), in which only one unmatched man makes a
proposal in any given step.10

Every run of ADA has an equivalent run of Gusfield and Irving’s proce-
dure since some nondeterministic sequence of proposals can be found that
matches up with ADA’s ordering. Moreover, what we believe is the key
insight of ADA — not allowing sure-to-be rejected proposals — clearly be-
longs to Gusfield and Irving. That being said, we believe that ADA remains
worthy of study. First, procedures based on simultaneous operations are
a closer fit to the higher ordering reasoning systems that economists and
game theorists assume of rational agents. Second, a simultaneous proposal
protocol is the implementation of choice for many assignment programs (see
Bó and Hakimov (2019, 2022) for examples in school assignment).

The efficiency savings of ADA over DA will be magnified by substitut-
ing ADA into mechanisms that require running DA more than once. One
such procedure is the efficiency-adjusted deferred acceptance (EADA), due

10Knuth (1996) notes that McVitie and Wilson’s implementation of DA is closely related
to the coupon collector problem that is described as follows: if each box of your favourite
cereal contains exactly one of n distinct coupons, then how many boxes of cereal must you
buy, on average, before you are in possession of all n coupons? Knuth uses this connection
to compute the mean and variance of proposals required for the market to clear.
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to Kesten (2010), that was introduced to counteract unnecessary welfare
losses that appear with DA (in particular when applied to school choice).11

EADA revises allocations whenever they give rise to a rejection cycle, an
operation that Tang and Yu (2014) show is equivalent to iteratively running
DA on appropriately defined submarkets.

Gonczarowski et al. (2023) are concerned with the policy-relevant issue
of how best to demonstrate DA’s strategy proof-ness without sacrificing
simplicity. They observe that every strategy proof mechanism has a menu
description (Hammond, 1979) and they argue that DA’s strategy proof-ness
is more easily conveyed using this approach.12 This is relevant because the
procedure that generates menus involves multiple runs of DA.

Another prominent and well-studied mechanism for assigning students
to schools is the Boston mechanism. This involves collecting reported pref-
erences and assigning students to schools over multiple rounds. The chief
difference between the Boston mechanism and DA is that with Boston ac-
ceptances are not tentative but final: once a student is assigned to a school,
they are in. This feature leaves open the possibility that students might try
to game the system by misreporting preferences, because a student who is
rejected by their top choice school in round 1 might find that their second
choice is no longer available in round 2. Mennle and Seuken (2017) describe
the adaptive Boston mechanism, used in certain parts of Germany, that pro-
ceeds in rounds but, unlike the Boston mechanism, with feedback: in every
round, unmatched students are informed of the schools that still have seats
available. Like ADA, this rules out sure-to-be rejected proposals.

Structure of the paper

The balance of the paper is as follows. Section 2 fixes notation and reminds
the reader of the environment, the DA algorithm, and the IDUA procedure.
In Section 3 we introduce the accelerated deferred acceptance algorithm and
present its theoretical properties. Section 4 describes our market generator
and presents the results of our simulations. Section 5 concludes and discusses
potential avenues for future work.

11Cerrone et al. (2024) report on an experimental horserace between EADA and DA.
They find that efficiency is improved and truth-telling rates are higher under EADA even
though it is not strategy proof. Despite its guaranteed efficiency advantages, EADA
only improves outcomes for students who are already “doing ok” (Ortega et al., 2024).
Specifically, Ortega et al. show that EADA does not improve the fortunes of students who
are assigned to their worst-ranked schools or those who remain unmatched under DA.

12Gonczarowski et al. (2024) describe an experiment that corroborates this conjecture.
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2 Preliminaries

In Section 2.1 we define the environment under study. (It is precisely the
one-to-one two-sided matching framework introduced by Gale and Shapley.)
In Section 2.2 we recap the original deferred acceptance (DA) algorithm
and the iterated deletion of unattractive alternatives (IDUA) procedure of
Balinski and Ratier (1997) and Gutin et al. (2023).

2.1 Matching problems

Let M be a set of n men and let W be a set of n women, where n is a positive
integer greater than or equal to 2. Each man m ∈M has a strict preference
relation, �m , over the set of all women, and each woman w ∈ W has a
strict preference relation, �w , over the set of all men. When man m prefers
woman w′ to woman w′′, we write w′ �m w′′, with an analogous statement
for the preferences of women. (Occasionally it will be more convenient to
present preferences as linearly ordered lists where the first entry on the list
is the most preferred, and so on. Which notation is being employed will be
clear from context.)

Definition 1. A matching problem, P , is a tuple ({�m}m∈M , {�w}w∈W ),
where {�m}m∈M and {�w}w∈W are the collections of preferences, one for
each of the n men and one for each of the n women.

A matching in P is a mapping µ from M∪W to itself such that: for every
man m ∈M , µ(m) ∈W ; for every woman w ∈W , µ(w) ∈M ; and for every
man-woman pair (m,w) ∈M ×W , µ(m) = w if and only if µ(w) = m.

The following is the key definition proposed by Gale and Shapley.

Definition 2. Consider a matching µ in a matching problem P . Man m
and woman w form a blocking pair with respect to µ if w �m µ(m) and
m �w µ(w).

In words, a man-woman pair (m,w) is blocking with respect to matching
µ if both m and w prefer each other over their partners in µ. Gale and
Shapley defined stability by the absence of a blocking pair.

Definition 3. A matching µ in P with no blocking pairs is a stable matching.

Gale and Shapley then proved the following remarkable result.

Theorem (Gale and Shapley (1962)). Every stable matching problem pos-
sesses at least one stable matching.

9



2.2 DA and IDUA

In this section we recap the DA algorithm and the IDUA procedure. We
document both since ADA is a blend of the two.

Before beginning, one key difference between the two procedures is worth
highlighting. The DA algorithm returns a stable matching. The IDUA
procedure, on the other hand, generates the normal form: a (weakly) smaller
matching market with the same set of stable matchings as the original that
is, in a sense, “boxed in” by the two extreme stable matchings. IDUA only
generates a stable matching in the event that the original market possesses
exactly one in which case the normal form is the unique stable matching
and nothing more (see the main result of Gutin et al. (2023)).

2.2.1 Deferred acceptance

In a run of DA, one side of the market makes proposals that the other side
reacts to. We frame it such that men propose and women respond.

DA begins by initialising all men as single. Each round of the algorithm
has three steps. First, each single man proposes to the woman currently top
of his preference list. Second, each woman that received at least one proposal
tentatively accepts the top proposer and rejects the other proposers. Third,
each man who was rejected udpates his preference list by removing from it
the woman that he proposed to and is deemed single for the next round.

Algorithm 1 DA algorithm

Initialise all men as single. Each round of the algorithm proceeds as follows:

1. Each single man proposes to his most preferred woman who has not yet
rejected him.
2. Each woman with at least one proposal tentatively accepts her top pro-
poser and rejects all proposers that she ranks below him.
3. Any man who is not matched becomes single.

When there is a round in which no man is rejected, return the current pairs.

That a stable matching exists for every two-sided matching market is a
consequence of the following result.

Theorem (Gale and Shapley (1962)). The output of the man-proposing
deferred acceptance algorithm is a stable matching.
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2.2.2 Iterated deletion of unattractive alternatives

Gale and Shapley deemed a matching unstable if there exists a blocking
pair with respect to it. According to this view, if a man and a woman who
are matched but not matched together fare better outside the matching,
then the matching’s structural integrity is under threat. Gutin et al. (2023,
2024) put forward an alternative interpretation of instability. They argue
that the causes of instability can be attributed to issues with pairs that are
contained within a matching, specifically the two pairs that contribute to
the breakaway couple. These pairs can be thought of as “weak” with respect
to the matching.

A key point is that some pairs are always weak no matter the rest of the
matching. To see how, suppose that woman w is man m’s dream partner.
Then there cannot exist a stable matching in which w is paired with a
man that she ranks below m. Why? Because w could always (at least)
propose to breakaway with m and m would certainly accept. If stability is a
requirement, such pairs can be deleted as they are irrelevant. That is, men
that w ranks below m can be removed from w’s preference list and for each
of these men w can be removed from his preference list.

The above motivates the notion of unattractive alternatives.

Definition 4 (Unattractive alternatives). We say that manm is an unattrac-
tive alternative to woman w, if there is some man m′ 6= m such that (i)
m′ �w m, and (ii) w �m′ w

′ for all w′ 6= w. A mirror-image statement
describes when a woman is an unattractive alternative to a man. Finally,
we say that w is an unattractive alternative to man m whenever m is an
unattractive alternative to woman w (and vice versa).

Deleting unattractive alternatives leaves behind a smaller matching mar-
ket that, almost by definition, has the same set of stable matchings as the
original. More importantly, the deletion operation can iterate: suppose that
woman w is the top choice for two men, m1 and m2, and suppose further that
m1 �w m2. While w’s preference list will be truncated from m1 on down,
note that m2’s preference list will be truncated from the top since w is re-
moved. Since a match with w won’t happen, m2 has a new most-preferred
woman, say w′, on his updated list. This may provide a new outside option
for w′ which might in turn allow w′ to truncate her preference lists in a way
that she was unable to before she became m2’s top choice.

The above describes the beginnings of the iterated deletion of unattrac-
tive alternatives (IDUA). This procedure repeatedly prunes redundant in-
formation from the preference lists as described above. IDUA continually
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deletes unattractive alternatives from preference lists until there remains no
pair who view each other as unattractive. The procedure stops when no
further deletions are possible and the (sub)matching market that remains is
referred to as the normal form.13

Definition 5 (The iterated deletion of unattractive alternatives (IDUA)).
Given a matching problem, P =

(
{�m}m∈M , {�w}w∈W

)
, we define �0

m :=
�m and �0

w :=�w , and for each k ≥ 1, form the matching (sub)problem
P k =

(
{�k

m}m∈M , {�k
w}w∈W

)
where for every man m and every woman w,

�k
m =

{
w
∣∣ w ∈ {�k−1

m

}
and m ∈

{
�k−1

w

}}
, and

�k
w =

{
m
∣∣ m ∈ {�k−1

w

}
and w ∈

{
�k−1

m

}}
.

(1)

Finally, define the normal form of matching problem P , denoted P ∗, as P k∗

where k∗ is the minimum k such that P k+1 = P k. Men’s preferences on the
normal form are denoted

{
�∗m
}

and those of women by {�∗w}.

The following lemma confirms that, for an analyst interested in the set
of stable matchings, restricting attention to the normal form is sufficient.

Lemma 1 (Balinski and Ratier (1997); Gutin et al. (2023)). The iterated
deletion of unattractive alternatives does not change the set of stable match-
ings. That is, P and its associated normal form, P ∗, contain exactly the
same set of stable matchings.

The next lemma shows that the normal form is “boxed in” by the man-
optimal and woman-optimal stable matchings. Before stating the lemma,
we introduce some notation. Given a matching problem, P , for each man
m, let τ(m) denote the woman at the top of m’s truncated preference list
in the normal form, P ∗, and similarly, for each w, let τ(w) denote the man
at the top of w’s truncated list.

Lemma 2 (Balinski and Ratier (1997); Gutin et al. (2023)). Let P be
stable matching problem and let P ∗ denote its normal form. The following
two collections of pairs, µM and µW , are stable matchings in P .

µM =
{(
m1, τ(m1)

)
, . . . ,

(
mn, τ(mn)

)}
µW =

{(
τ(w1), w1

)
, . . . ,

(
τ(wn), wn

)}
13Section 2.3 of Gutin et al. (2023) argues that IDUA is the matching market analog

of the iterated deletion of dominated strategies procedure for strategic games. The reason
for the parallel is that both leave behind a smaller mathematical object without changing
the set of “solutions”.
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Consider the collection of pairs µM . To see that µM is a matching,
observe that every man must have a different most preferred woman in the
normal form. If not, then two men have the same most-preferred woman.
But this cannot be because a woman is never indifferent over two men and
so would cut loose the less preferred one, meaning that the IDUA procedure
is not yet finished. To see that the matching µM is stable, note that every
man is paired with his most preferred feasible woman (any preferred woman
is infeasible because she does not appear on his reduced preference list).
Such a matching must be stable because no man is willing to swap and so
there can be no blocking pairs.

A mirror image argument to the above confirms that µW is a stable
matching. The matchings µM and µW are typically referred to as the man-
optimal stable matching and the woman-optimal stable matching respec-
tively.

We conclude this section with two further comments on the normal form.
First, the environment that we consider in this paper is a balanced one-to-
one matching market where all preference lists are complete. Given this,
all participants appear in some stable matching and hence appear in the
normal form. But upon reflection, the normal form is always a balanced
market regardless of the specifics of the original market and so, at least
when it comes to the analysis of stable outcomes, restricting attention to
balanced matching markets is not such a limitation after all.14

Second, Gutin et al. (2024) show that the same IDUA procedure that
generates the normal form can also be used to explore the set of stable
matchings in it. They consider assignment constraints and show how IDUA
can be used to determine whether a stable matching satisfying the con-
straints is feasible and if so will output all of them.15 In the absence of any
constraints, the algorithm of Gutin et al. returns every stable matching.

3 Accelerated deferred acceptance

In this section we introduce the accelerated deferred acceptance algorithm.
ADA is strikingly similar to the DA algorithm of Gale and Shapley. The key
difference is that ADA moves at greater pace through the market because

14That the normal form is always a balanced market strengthens the rural hospitals
theorem (McVitie and Wilson, 1970; Roth, 1984, 1986; Gale and Sotomayor, 1985a,b):
not only does the normal form identify those participants that appear in every stable
matching, it also identifies pairs that are not possible amongst these participants.

15Assignment constraints generalise the notion of forced pairs (Gusfield and Irving, 1989)
and restricted pairs (Dias et al., 2003). That is, pairs that must / must not be included.
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preferences are truncated much as they are in IDUA. Accelerated deferred
acceptance can in fact be interpreted as a one-sided variant of IDUA.

Section 3.1 defines accelerated deferred acceptance and confirms that
it generates the same outcome as DA. (Given this, accelerated deferred
acceptance inherits all properties of classical DA, e.g., it is strategy proof
for the proposing side.) In Section 3.2, we show that accelerated deferred
acceptance has practical improvements over DA: it requires fewer proposals
(Theorem 2), it terminates in fewer rounds (Theorem 3), and all tentative
matches take place no later (Theorem 4). These features are illustrated by
Example 1, that details a run of both algorithms on the same market.

3.1 The algorithm

The accelerated deferred acceptance algorithm is similar to DA except that
whenever a woman receives a new a proposal, she rejects all men who she
ranks below the most preferred proposing man, not just those who have also
proposed to her.16 Some of these rejections may be pre-emptive in that a
subset of men are forbidden from ever proposing to certain women. Some
of these men might have ultimately proposed while others might have never
got around to it; but all are prevented from doing so.

Algorithm 2 Accelerated deferred acceptance algorithm

Initialise all men as single. Every round of the algorithm proceeds as follows:

1. Each single man proposes to his most preferred woman who has not yet
rejected him.
2. Each woman with at least one proposal tentatively accepts her top pro-
poser and rejects all men that she ranks below him.
3. Any man who is not matched becomes single.

When there is a round in which no man is rejected, return the current pairs.

Our main result in this section, Theorem 1, confirms that accelerated
deferred acceptance finds the same stable matching as that found by DA.
The following two observations, that also hold for a run of DA, are used to
prove the result.

Observation 1. Men propose to women in decreasing order of preference.
16We remind the reader that the key difference between Gale and Shapley’s DA algo-

rithm (Algorithm 1) and our accelerated deferred acceptance (Algorithm 2) is one word:
accelerated deferred acceptance replaces the word “proposers” in DA with the word “men”.
For emphasis we have typeset the updated word in red.
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Observation 2. Once a woman is matched, she never becomes unmatched.

Observation 1 is a restatement of the fact that each man works down
his preference list under ADA. However, with ADA a man may not work
incrementally down his list as with DA, because it may be that the woman
who would be top of his “as yet unproposed to” list has already pre-emptively
rejected him. By Observation 2, women only ever “trade up”. Again, while
the same statement holds for DA, there is a difference. For ADA, whenever
a woman receives a new proposal in a given round she is guaranteed of
trading up because proposals only ever arrive from men who she prefers to
her current match.

We now state the result.

Theorem 1. The man-proposing accelerated deferred acceptance returns
the same matching as the man-proposing deferred acceptance algorithm.

We refer the reader to Gusfield and Irving (1989, §1.2.4) for a proof of
Theorem 1. Gusfield and Irving show that the result holds for any sequence
of proposals, a property they refer to as nondeterminism, and so clearly
it holds for ADA since its round-by-round nature is only consistent with
certain orderings of proposals.

Given that ADA and DA always return the same stable matching, any
and all properties of DA, be they desirable or not, are assured to hold
for ADA. For example, accelerated deferred acceptance must return the
proposer-optimal stable matching. Moreover, since DA is strategy proof
for those proposing (Dubins and Freedman, 1981; Roth, 1982), accelerated
deferred acceptance is too.17

3.2 Fewer proposals, fewer rounds, and earlier pairings

In this section we compare and contrast both algorithms along various cri-
teria. We begin with an example to illustrate how ADA can “move more
quickly” through a matching market than DA.

Example 1. Consider a market with five men, M = {m1,m2,m3,m4,m5},
and five women, W = {w1, w2, w3, w4, w5}. The preference list for each man

17In the context of two-sided matching markets, an allocation rule is a mapping from the
reported preferences of all 2n market participants to the set of matchings. An allocation
rule is said to be strategy proof if it is a weakly dominant strategy for participants to
report their preferences truthfully. For a concise proof that DA is strategy proof for the
proposing side see Nisan et al. (2007, §10.4, page 258).
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and each woman are presented below, with the participants on the other
side of the market listed in order of decreasing preference.

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2 (2)

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

We now show how both DA and accelerated deferred acceptance operate
on the market above. In the interest of space we will only present how both
algorithms operate in the first two rounds. In fact, two rounds is enough for
accelerated deferred acceptance to terminate but not so for DA as it requires
four rounds. How DA continues to completion is spelled out in Appendix B.

Both DA and accelerated deferred acceptance begin with initialising all
men as single. To indicate this in (2), we have written men in blue if they
are active in ADA and circled a man in a blue circle if he is active in DA.
All men are active in Round 1 of both so each man mi is written as mi.

In the first round each man approaches his top ranked woman. This is
depicted in the Table 1 below. Below each woman are two columns that
convey whether the woman is proposed to under DA or ADA. The column
in gray is for DA and the column in green is for ADA. Whenever a woman
receives multiple proposals we order the suitors in the column from top
to bottom in order of decreasing preference. In this example, woman w1

received multiple proposals in Round 1. She will tentatively accept her
most preferred of these, man m1. All tentative acceptances are represented
by labelling the accepted man with an asterix.

Table 1: proposals and tentative acceptances in Round 1.

w1 w2 w3 w4 w5

m∗1 m∗1 m∗4 m∗4 m∗5 m∗5

m2 m2

m3 m3

Table 1 listed proposals and acceptances in Round 1. Now let us turn to
rejections, which is the first point at which the two algorithms diverge. We
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represent rejections by updating the preference lists as in (3). We denote
rejections that occur under ADA in red. Similarly, a rejection that occurs
under DA is depicted by putting a red box around the relevant party. For
example, since man m2 was rejected by woman w1 in both algorithms, we
write m2 in w1’s preference list and write w1 in m2’s preference list.

Note the preference lists of w4 and w5 in (3) . Each woman was proposed
to by her top ranked male, m4 for w4 and m5 for w5. Both algorithms
therefore include the two tentative pairs (m4, w4) and (m5, w5). But for
ADA there are pre-emptive rejections handed out by w4 and w5. It is for
this reason that some entries on their respective preference lists are in red.

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2 (3)

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

Some reflection reveals that ADA always starts out with weakly more
rejections than DA. This is the case because any man rejected in Round 1
of DA is also rejected in Round 1 of ADA, but ADA also allows pre-emptive
rejections to be handed out.

Let us now move to Round 2. The only single men at the beginning of
this round are m2 and m3. DA stipulates that both men propose to the top
ranked as-yet-unproposed-to woman on their list. From (3), we can see that
for both men this is w4. For ADA there is a difference. Consider m2. During
Round 1, he received a pre-emptive rejection from w4 and w5, conveyed by
writing w4 and w5 in the preference list of m2 in (3). Therefore m2 proposes
to w2 in Round 2.

The full list of proposals in Round 2 are as in Table 2 below.

Table 2: proposals and tentative acceptances in Round 2.

w1 w2 w3 w4 w5

m∗1 m∗1 m∗2 m∗3 m∗4 m∗4 m∗5 m∗5

m3

m2

Note from Table 2 above that ADA is finished at the end of Round 2.
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It has generated a collection of five tentative pairs {(mi, wi)}5i=1 that make
up a matching, and Theorem 1 assures that whenever the algorithm finds a
matching that the matching is stable.

In contrast to ADA, the DA algorithm does not terminate after two
rounds. In Round 2 of DA, both m2 and m3 propose to woman w4. But
w4 is already tentatively paired with m4 who she prefers over each. So
w4 rejects these proposals and both m2 and m3 are back on the market in
Round 3 with their preference lists updated as in (4). After 4 rounds, DA
ultimately terminates at the same stable matching as that found by ADA.
The details are provided in Appendix B.

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2 (4)

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

Let us now make some observations about the example.
After two rounds the number of proposals made by DA and ADA must

be the same since each generates n proposals in the first round, and all males
rejected in the first round make a new proposal in the second. This holds
for our example with both m2 and m3 single at the beginning of Round 2.

Note that in Round 2 of the DA algorithm, all proposals made were
rejected. We refer to a round of this kind as an idle round, since the collection
of matched pairs did not update. The ADA algorithm cannot have an idle
round. In Section 4 we show that DA can have many.

Woman w rejecting a proposal from man m can be interpreted as a
deletion of m from the preference list of w and a removal of w from that of
m. Viewed in this way, the structure of the preference lists upon termination
of both algorithms is worth noting. DA leaves men’s preferences as a subset
of their original list that is contiguous from their stable match down to
their least favourite woman; women’s remaining preferences are a subset of
the original list that need not be be contiguous. ADA is the opposite: the
remaining preference list for a woman is a contiguous subset of the original
list starting with the most preferred man and concluding with the stable
match; men’s remaining preference lists can be scattered.

Let us now consider our measures of efficiency. We begin with the num-
ber of proposals needed for each algorithm to terminate. From the analysis
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above we see that ADA required seven proposals to identify the man-optimal
stable matching: five proposals in Round 1 and two proposals in Round 2.
From Appendix B, we see that DA required ten proposals. It turns out that
ADA requiring fewer proposals than DA is not a function of the specifics
of Example 1. Rather, this is a general property that always holds, as con-
firmed by the following result that is proved in Appendix A.

Theorem 2. Accelerated deferred acceptance never requires more proposals
than DA.

Our next efficiency measure is number of rounds required to completion.
In Example 1, ADA needed two rounds whereas DA required four rounds,
one of which was an idle round. Again, this efficiency gain is not an artefact
of Example 1. Rather, we have the following assurance.

Theorem 3. Accelerated deferred acceptance always terminates in weakly
fewer rounds than DA.

In fact, Theorem 3 above follows almost immediately from the following,
stronger result.

Theorem 4. Each proposal that is made when running ADA takes place
in the same or an earlier round than for DA.

It is clear that ADA is weakly “ahead” of DA after only one round of
each algorithm since both contain the same number of direct rejections and
ADA may contain some pre-emptive rejections too. Theorem 4 confirms
that ADA stays weakly ahead. The proof of Theorem 4 is in Appendix A.

Theorem 3 follows from Theorem 4 because all final pairs match no later
for ADA. That is, ADA terminates when the last final pair is matched and
this happens on the back of an accepted proposal.

We conclude this section by mentioning the recent paper of Gokhale
et al. (2024) that focuses on markets that generate worst case performance
of classical DA as measured both by number of rounds and by number of
proposals. The authors show that if a market maximises the number of
rounds needed for DA to terminate then it also maximises the number of
proposals required. Moreover, any such a market must have a unique stable
matching. Similar questions regarding ADA can also be posed but we leave
this to future work.
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4 Computational experiments

Our theoretical findings in Section 3 confirm that ADA is weakly more
efficient than DA in certain ways. However, the results are completely silent
on the extent, if any, of the efficiency gains. The computational experiments
described in this section not only confirm that improvements are possible,
but that they can be sizeable.

Specifically, with preference lists pre-defined, the objectives of our com-
putational study are as follows:

• study the number of rounds and the number of proposals generated
by ADA compared to DA.

• study the proportion of stable pairs by round of each algorithm, which
is a new metric that captures when each stable pair first matched.

• compare the running times of the two algorithms.

Section 4.1 defines the pseudo-random market generator and Sections 4.2,
4.3, 4.4 and 4.5 present our findings.

4.1 Market generator

Since the number of two-sided matching problems of size n is (n!)2n, an
exhaustive exploration of how the algorithms perform on every market is
intractable from n = 6 and up. For this reason, we propose a novel market
generator that allows one to sample random markets for any market size n
where the bias in the sampling is controlled by a parameter c ∈ [0, 1].

Let a market be described by a tuple (W ,M), where W = (wi,j) and
M = (mi,j) are n × n matrices. Each row of each of these matrices is a
permutation of (1, 2, . . . , n).

Definition 6 (Market generator). Our market generator takes two param-
eters: a non-negative integer n for the size of the market and a coefficient
c ∈ [0, 1] that controls the bias in the sampling distribution over preferences
of participants on the same side of the market.18 The generator works as
follows.

1. Create a random permutation p of values (0, 1, . . . , n− 1).

2. For each i ∈ {1, 2, . . . , n}, create a random vector vi ∈ Rn, where each
element of vi is in the range [0, n− 1].

18We assume that the bias is the same for both sides. This can be relaxed.
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3. Calculate ui = (1− c)vi + cp. Let (mi,1,mi,2, . . . ,mi,n) be the permu-
tation that orders ui in ascending order.

4. Follow steps 1–3 to produce matrix W .

Observe that the matrices M and W are uniformly random when c = 0.
This follows because each row is drawn uniformly from the set of all possible
preferences and the rows are pairwise independent. Conversely, when c = 1,
the preferences of all the men are identical and the preferences of all the
women are identical (Holzman and Samet refer to such preferences as those
with a “universal ranking”).

The implementation of our market generator is publicly available at Kara-
petyan (2024).

4.2 Number of rounds

The number of rounds and the number of proposals are arguably the most
important metrics as it is easy to imagine a market where there are costs
associated with each round and each proposal.

Figure 2 shows how the number of rounds changes with the the size of the
market for three different values of the bias parameter: uniformly random
(c = 0), moderately similar (c = 0.5), or similar (c = 0.9). The values of n
change as n = 2, 4, 8, . . . , 4, 096 (i.e., ranging from 21 to 212). The lines are
colour-coded according to the value of c. For each colour (value of c), the
dashed lines show the average number of rounds taken under DA, while the
solid lines plot the corresponding value for ADA.

Note that, unless specified otherwise, each point in every figure in this
section corresponds to a mean value over 1,000 markets generated with iden-
tical parameter values but distinct pseudo-random number generator seeds.

For all three values of c, the total number of rounds for DA increases
super-linearly with market size. In contrast, the number of rounds always
evolves sublinearly for ADA. This difference leads to a substantial reduction
in rounds for ADA, particularly for larger markets.

It is evident from Figure 2 that the number of rounds significantly de-
pends on the value of c. To investigate this dependency further, we ran
another set of experiments where we fixed n = 1, 000 and varied c as
c = 0, 0.01, 0.02, . . . , 1. The results are reported in Figure 3 (for this ex-
periment, we increased the number of markets per point to 10, 000 as the
high variance was causing significant noise). As in Figure 2, the difference
between the two algorithms is stark. For example, when c = 0, ADA reduces
the number of rounds by a factor of 7. When c = 0.5, the scaling factor
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Figure 2: Number of rounds by n.

increases to 50. In fact, the values of c close to c = 0.5 seem to maximise
the number of rounds for DA and minimise the number of rounds of ADA.
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Figure 3: Number of rounds as a function of c.

As mentioned above, we find that the number of rounds needed by DA
has significant variation. Figure 4 shows the distributions of the number
of rounds for DA and ADA for uniformly random, moderately similar and
similar markets. (Once again, we used 10,000 markets for each value of c
for this experiment.)
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Figure 4: The distributions of the number of rounds for c = 0.0, c = 0.5 and
c = 0.9.

An interesting observation from Figure 4 is that the two distributions for
DA and ADA are similar except shifted. Since the scale of the horizontal axis
is logarithmic, this means that the relative variances for the two algorithms
are similar, however the absolute variances are very different. In other words,
the number of rounds of ADA is far more predictable than the number of
rounds of DA, which could be an important strength of ADA.

All the experiments so far demonstrated that ADA is superior to DA,
on average, with respect to certain measures. However, it is natural to ask
whether there exist individual markets that are “difficult” for one algorithm
but not the other. To investigate this, we produced Figure 5 that shows how
the number of rounds of DA is related to the number of rounds of ADA for
each market (1, 000 markets are used for each c = 0, 0.5, 0.9).

As is evident from Figure 5, the number of rounds required by the two
algorithms are highly correlated. That is, markets where ADA “takes time”
to clear also take time to clear using DA, and vice versa. Of course, we
cannot rule out that there exists a collection of markets for which the per-
formance of the two algorithms does not track. But we have not observed
any in our experiments.

4.3 Number of proposals

Figures 6 and 7 show the number of proposals for each algorithm as it
changes for n and c, respectively.
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Unsurprisingly, the number of proposals required by both algorithms
increases in n. However, for DA, the number of proposals needed dwarfs
that of ADA. To see this, consider the largest market size, n = 4, 096, with
c = 0.9. On average DA used 7,637,702 proposals whereas ADA managed
with only 208,585, a reduction of 96%.

Note that, unlike for number of rounds, the number of proposals mono-
tonically increases with c. To understand the shape, it is useful to consider
why they are exactly equal when c = 1. In this case, for both algorithms, all
men propose to the same woman in round 1. She accepts her favourite. In
round 2, all remaining n − 1 men propose to the agreed-upon second most
desirable woman, who accepts her favourite. And so on. Continuing like
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this, it can be checked that both algorithms require n(n+ 1)/2 proposals to
terminate. When c is close to but not equal to 1, DA proceeds in a manner
similar to the above (but with slightly fewer concurrent proposals because
some heterogeneity in preferences is present). However, even a small amount
of heterogeneity in preferences can result in a lot of pre-emptive rejections
for ADA which substantially reduces the number of proposals.

While not reported, we have checked the correlations for the numbers
of proposals of DA and ADA, replicating the experiments at the end of
Section 4.2. Our observations were similar except that the distributions for
the number of proposals are in general narrower.

4.4 Proportion of final pairs matched by round

A metric that we believe is interesting is the “proportion of stable pairs
matched by round”. To see how the measure is computed, consider a market
of size n = 2 where both men have identical preferences. One of the stable
pairs meet in the first round, while the other pair do not meet until round
2. In this example, our metric describes the algorithm via a non-decreasing
step function that takes the value 0.5 after the first round and the value 1
when all stable pairs have met. Figure 8 below plots this measure for both
algorithms for c = 0, c = 0.5, and c = 0.9.

Consider the first panel in Figure 8 that corresponds to c = 0. Here,
ADA arrives at the stable matching after 877 rounds while DA does not
conclude until round 7, 778. After 877 rounds, DA has matched 90% of
stable pairs. While close to completion on this measure, only 11% of rounds
are finished. This can be contrasted with the third panel that plots the same
measure for c = 0.9 (this same image was already presented in Figure 1 in
Section 1). Here, upon termination of ADA, DA has completed 7% of rounds
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but has only matched 13% of final pairs.
Despite the differences in rate of progression of the two algorithms across

combinations of parameters, the shape of all six step functions plotted is
similar. By definition all functions must be weakly increasing, but we note
that all are concave. The concavity was not at all obvious to us in advance.

4.5 Execution time

Our final comparison is of the run times of both algorithms. Unfortunately,
due to the lack of an industry-standard implementation of DA, we had
to compare ADA to our own implementation of DA. Both were coded in
Python and include only trivial optimisations. Indeed, since the difference
between the two algorithms is relatively small, the implementations are also
quite similar. For full transparency, and to enable future research, our im-
plementations are publicly available at Karapetyan (2024).

Figure 9 plots average runtime as a function of c for n = 1, 000. For
both algorithms, the average runtime is strictly increasing in c, and the gap
between their running times is also increasing with c except for c > 0.9.
Other than the extreme point, c = 1, in our experiments ADA is always at
least as fast as DA.

To investigate this speed up further, we plotted the distributions of the
runtimes for the two algorithms in Figure 10. At least for our experiments,
the runtime distributions are relatively narrow. In fact, for large c there is
no overlap between them.
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5 Conclusion and extensions for future work

Conclusion

The deferred acceptance (DA) algorithm of Gale and Shapley makes at least
three outstanding contributions to the theory of matching. It confirms the
existence of a stable matching for every two-sided market, it finds the op-
timal stable matching from the perspective of one side, and a mechanism
based on it is strategy proof for the proposing side. The first property is
fundamental. The second is of genuine practical importance because often,
like when matching students to schools or doctors to hospitals, centralised
matching protocols lean toward assignments that favour one side. The third
means that achieving the second is not merely a pipe dream.

In this paper we proposed the accelerated deferred acceptance algorithm
(ADA). This procedure differs from DA in one minor but important way: it
rules out proposals that will knowingly never be accepted. Such an amend-
ment does not change the output but it does generate efficiencies. ADA re-
quires fewer proposals, terminates in fewer rounds, and stable pairings find
each other earlier. In theory the efficiency gains are only weak. Compu-
tational experiments on simulated markets confirm that not only can these
efficiency gains be strict but that they are often strict and can be substantial.

Extensions

We see two natural directions in which extensions are possible. The first
involves investigating how ADA compares with DA in more general match-
ing environments. The second entails including the “don’t allow sure-to-be
rejected proposals” insight to other variants of the DA procedure.

1. Evaluating ADA and DA in richer environments:

The matching environment that we have considered in this paper, Defini-
tion 1, is classified by the following three features.

(i) a one-to-one market: each participant can only match with one other.

(ii) all preference lists are complete: no participant views anyone on the
other side of the market as unacceptable.

(iii) a balanced market: there are the same number of men as women.

The above features are far from universal to all matching markets. In
fact, this environment is pretty artificial as all three seem unlikely to hold
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in practice. Our reasons for keeping these market characteristics fixed was
twofold: (i) it seemed the natural starting point, and (ii) in order to keep
the paper short (because there are so many ways that the above features
can be relaxed).

Even amongst those that satisfy features (i) - (iii), there exist families of
markets for which ADA terminates in a constant number of rounds, whereas
DA requires an unbounded number. To give an example, consider a market
where, for every i = 1, . . . , n − 1, woman wi and man mi rank each other
first, but man mn ranks woman wn last. Here, ADA will wrap up after just
two rounds while DA would require n rounds.

Disparities of this kind may be magnified when relaxing the features
listed above, and so evaluating the performances of the two algorithms in
richer environments seems a potentially interesting avenue of further study.

2. Accelerating other variants of deferred acceptance:

The key to our accelerated deferred acceptance algorithm is that it identi-
fies proposals that will never be accepted because the proposee is currently
matched to someone they prefer more. Mechanically, proposals of this na-
ture are ruled out by truncating preference lists in response to top proposals,
an insight that is borrowed from the IDUA procedure (Balinski and Ratier,
1997; Gutin et al., 2023). Our hope is that similar truncation operations
might prove useful to existing variants of DA.
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APPENDIX

A Proofs omitted from the main text

Theorem 2. Accelerated deferred acceptance never requires more proposals
than DA.

Proof. Fix a two-sided matching market. Let pD denote the number of
proposals when running DA and let pA denote the number of proposals
when running ADA.

Let µM =
{(
m1, τ(m1)

)
, . . . ,

(
mn, τ(mn)

)}
be the man-optimal stable

matching returned by both algorithms (recall, as per Theorem 1, that both
algorithms return µM ). By Observation 1, when DA terminates, each man
m has proposed to all women that he strictly prefers to τ(m), and also to
woman τ(m), and to no woman that he ranks below τ(m). Similarly, for
ADA, no man m has proposed to any woman strictly worse than τ(m), since
m would only propose to such a woman in the event that he was rejected
by τ(m). However, under ADA each man m may not have proposed to all
women strictly preferred to τ(m). Therefore, it must be that pA ≤ pD.

Theorem 4. Each proposal that is made when running ADA takes place
in the same round or an earlier round than when running DA.

The proof of Theorem 4 requires some terminology and notation. Say
that (m,w) is a pair in matching problem P if w appears on the preference
list of m and m appears on the preference list of w in P . Given a stable
matching problem, P , we now define a sub-problem.

Definition 7. Say that matching problem P is a sub-problem of matching
problem P ′ when the following properties hold.

1. if (m,w) is a pair in P , then it is also a pair in P ′.

2. if man m prefers w over w′ in P , then m also prefers w over w′ in P ′.

3. if woman w prefers m over m′ in P , then w also prefers m over m′ in
P ′.

We interpret both ADA and DA as deletion operations that generate
sub-problems by deleting pairs. We are now ready to prove Theorem 4.
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Proof. Let P be a stable matching problem. Let Ak(P ) denote the sub-
problem obtained after k iterations of ADA and let Dk(P ) denote the sub-
problem obtained after k iterations of DA. We will show by induction that
Ak(P ) is a sub-problem Dk(P ) (denoted by Ak(P ) ⊆ Dk(P )) for all k =
0, 1, 2, . . . By definition, A0(P ) = D0(P ) = P , and clearly A1(P ) ⊆ D1(P ).
Assume that k ≥ 2, and, by the inductive hypothesis, assume that Ar(P ) ⊆
Dr(P ) for all r < k.

Towards a contradiction, assume that Ak(P ) is not a sub-problem of
Dk(P ). This implies that some pair (m,w) is a pair in Ak(P ) but not in
Dk(P ). As Ak(P ) ⊆ Ak−1(P ) ⊆ Dk−1(P ), it must be that (m,w) is a pair
in Dk−1(P ). This means that (m,w) is deleted from Dk−1(P ) by the DA
algorithm in iteration k. Let (m′, w) be a pair such that m′ proposes to w
in iteration k of DA but woman w prefers m′ over m, which is the reason
that (m,w) gets deleted from Dk−1(P ). We now consider the following two
cases separately.

Case 1, (m′, w) is a pair in Ak−1(P ): Since w is the most preferred
woman for man m′ in iteration k of DA, and Ak−1(P ) ⊆ Dk−1(P ) (by
induction), and (m′, w) is a pair in Ak−1(P ) (by assumption), it must be that
man m′ also proposes to woman w in the k’th iteration of ADA. However,
this implies that (m,w) is not a pair Ak(P ) because then woman w prefers
m′ over m, a contradiction to the assumption that (m,w) belongs to Ak(P )

Case 2, (m′, w) is not a pair in Ak−1(P ): This implies that the pair
(m′, w) was deleted by ADA in the r’th iteration of ADA for some r < k.
However, since woman w prefers m′ over m this implies that (m,w) would
also have been deleted in the r’th iteration (or earlier), a contradiction to
the assumption that (m,w) belongs to Ak(P ).

In both of the above cases we obtain a contradiction, implying that
Ak(P ) ⊆ Dk(P ) for all non-negative integers k, as desired.

B Solving Example 1 using both algorithms

Example 1. Consider a one-to-one two-sided matching problem with five
men, M = {m1,m2,m3,m4,m5}, and five women, W = {w1, w2, w3, w4, w5}.
The preference lists for each man and each woman are presented below, with
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potential partners listed in order of decreasing preference.

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

Round 1:

w1 w2 w3 w4 w5

m1 m1 m4 m4 m5 m5

m∗2 m∗2

m∗3 m∗3

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

Round 2:

w1 w2 w3 w4 w5

m1 m1 m2 m3 m4 m4 m5 m5

m∗3

m∗2

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

32



Since ADA has terminated we focus only on DA from here on. The single
men at the beginning of Round 3 are m2 and m3. Man m2’s top choice is
w5 (note that w5 has already rejected m2 in ADA indicated by writing w5

instead of w5 in m2’s preference list) and next on m3’s list is the as yet
unproposed to w3. So, in Round 3 of DA, m2 proposes to and is rejected by
w5 (as forecast by ADA) and so will be back on the market in Round 4 and
m3 proposes to w3 who tentatively accepts him given that she is single.

Round 3:

w1 w2 w3 w4 w5

m1 m1 m2 m3 m3 m4 m4 m5 m5

m∗2

w1 : m5 ,m4 ,m1, m2, m3 m1 :w1 , w2 , w3 , w4 , w5

w2 : m1 ,m3 ,m2, m4, m5 m2 : w1 , w4 , w5 , w2, w3

w3 : m5 ,m4 ,m3, m2, m1 m3 : w1 , w4 , w3 , w5, w2 (5)

w4 : m4 ,m2 ,m1, m3, m5 m4 : w4 , w2 , w3 , w1, w5

w5 : m5 ,m1 ,m3, m4, m2 m5 : w5 , w4 , w1 , w2, w3

The only man without a partner at the beginning of round 4 of DA is
m2, who was rejected by woman w5 in round 3. This rejection is indicated
by the red box around m2 in the preference list of w5 and the red box around
w5 in the preference list of m2. The top ranked woman on m2’s preference
list that he has not thus far proposed to is w2. Woman w2 is currently
unmatched and so she (tentatively) accepts m2. Every woman now has a
tentative match and so the algorithm terminates and returns the collection
of pairs that make up a matching.

Round 4:

w1 w2 w3 w4 w5

m1 m1 m2 m2 m3 m3 m4 m4 m5 m5
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